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Note 

On the Monte Carlo Simulation of Physical Systems 

1. INTRODUCTION 

Insofar as the modern powerful computers open new unique possibilities for 
application of the Monte Carlo method to the statistical simulation of the physical 
systems with many degrees of freedom [l-3], the role of the “quality” of 
pseudorandom numbers used in such simulations is becoming highly significant. 

The first generator of pseudorandom numbers was initiated by Von Neuman, 
being based on successive calculation of the “middle-square” [4]. However, 
extensive studies carried out by Metropolis have shown that this generator is not 
good enough [S]. 

Interest to this old problem arose, when, making use of different generators of 
pseudorandom numbers, the results gave considerable disagreement [7, 83; for 
example, this phenomenon was observed for the magnetization and renormalized 
coupling constant in the three-dimensional Ising model [7]. 

Obviously, there arise difficulties peculiar to the Monte Carlo method consisting 
in the need of (i) a good method of estimation of calculation error and (ii) finding 
a pseudorandom number generator that provides a speed of convergence as high as 
possible. 

There exists a criterion via which one can estimate the calculation error as a 
function of the “quality” of pseudorandom numbers P,. This is called the D, 
discrepancy, being determined as follows [9]. 

Let 17d be a unit hypercube in d-dimensional space: 17d consists of all points P 
with Cartesian coordinates 0 d Xi 6 1 (i = 1, . . . . d); then 

D,(P,, . . . . P,-,)= sup IN.X, . ..X.-S,l, 
PCS& 

(1) 

where S, is the number of points of the sequence P,, . . . . P, _ i, whose coordinates 
(X’,“‘, . ..) Xr’) k = 0 S, - 1 satisfy inequality 0 < Xjk’ < Xi, i = 1, . . . . d, 
k = 0, . . . . S, i 1. The gd’;;metrical meaning of the definition (1) is that N. X, . X, 
is the approximate number of points corresponding to a parallelepipied with a 
diagonal OP at ideal uniform distribution, while S, is the number of points 
actually in this parallelepiped (D,<N). Hence D, estimates a maximal deviation 
of the real distribution of points from the ideal one. 
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The following result is known [lo]: if f(P) is continuous together with its first 
partial derivatives, then 

(2) 

where C > 0. In other words, good agreement between the empirical distribution 
function S, of a pseudorandom sequence and a theoretical one gives a small 
integration remainder. 

Therefore one must be able to generate pseudorandom sequence of points P, in 
such a way, that D, would grow as slowly as possible. 

There exist also other “qualitative” characteristics of the P, sequence, such as the 
x2 and o2 criteria, which do not, however, enable one to obtain estimates of the 
type (2). 

If one is not interested in the dynamical origin of the pseudorandom sequence 
P,, but considers it as a sequence of a random quantity 5 unlirformly distributed 
in a cube Z7d with a probability density p(t) = 1, then according to the central limit 
theorem the rate of convergence in (2) with high probability will be l/fi [9]. 
Therefore, for 5, D, - 3. 

Hence the rate of convergence depends on the dynamical origin of the pseudo- 
random sequence P, and is determined by the rate of growth of D,. 

2. PSEUDORANDOM NUMBERS AS A TRAJECTORY OF DYNAMICAL SYSTEM 

To explain why the behavior of D, depends on the dynamical origin of P,, let 
us discuss the P, sequence as a trajectory of some dynamical system. For that, we 
assume the cube nd to be the phase space M of the dynamical system T, then 

P,=T.T. ... .T.P,-TKPo, (3) 

where P, is the initial point of the trajectory. In such context the sequence of P, 
points represents one of the trajectories of the dynamical system T. We will assume 
here that the phase volume of this dynamical system is conserved, i.e., the Liouville 
theorem holds. 

Usually pseudorandom sequences are generated by the recursion relation [9-l 1 ] 

FK) = F(X”‘, . ..) iPK- 1’). (4) 

where F is some function. For example, F may be taken in the form 

x(K)=~($K-l))c {K.$K-I)}, (5) 
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where K$= 1 is a fixed integer number (under such a condition the Liouville 
theorem holds with, T= F), and { } denotes fractional part of the argument.’ 

As is known from the viewpoint of dynamical systems, the convergence of sums 
to the integral 

is ensured if the dynamical system T is ergodic [12, 131. Note that the rate of 
convergence may be arbitrary. 

If we consider the pseudorandom number generator as a dynamical system, we 
can reformulate the statement (2); namely, the rate of convergence is provided by 
the dynamical properties of a system T: 

(7) 

3. STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS 

A question arises regarding which property of the dynamical system T, given the 
pseudorandom number generator, ensures the slowest growth of discrepancy 
D,(T) and, thus, the high rate of convergence in (2). The principal argument is as 
follows: 

It is known, that dynamical systems can be classified by the degree of growth of 
their statistical properties. These are systems with mixing, with n-fold mixing, and, 
finally, the Kolmogorov K-systems possessing maximally strong statistical proper- 
ties [13]. All these dynamical systems are characterized by the property of relaxa- 
tion [13, 161. K-systems relax most rapidly because of their exponential instability 
ClV. 

Now it becomes clear that the slow growth of the deviation D,(T) will be 
provided if the dynamical system relaxes quickly to the equilibrium state. As we 
mentioned above, K-systems relax with exponential rate. For this reason K-systems 
are good candidates to be used as pseudorandom nubmer generators. We will 
characterize each pseudorandom number generator by its relaxation time 2, and if 
the time z is less then the generator is better. 

If from this viewpoint, we look at existing pseudorandom generators (5), then we 
see that they, also, are one-dimensional K-systems [ 13, 15, 18, 201. The correlation 
function of this system behaves as (KP 1) 

RN=kexp( -Nln(K)), (8) 

1 Its modifications were also used in [9, 111. 
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where 

and 
(-pf’) = (-pf+N)) = 1. 

2, (9) 

i.e., K determines an essential characteristic of the time of correlation splitting 

r0 = l/in(K). (10) 

Consider the set of points in a very small interval 6X”’ $ l/K. One can readily find 
the time z, for which trajectories, coming from these points, almost uniformly fill 
the interval [0, 11: 

1 z=z,.ln 3 , ( > (11) 

since 6XcN’ = KN SK(‘) = exp(N In(K)) 6X”‘. Physically, z is an approximate time of 
the establishment of the stationary distribution function p(X) to unity. The 
characteristic times in this system are coupled by the relation 

To < T. (12) 

From this discussion we see how growth of the deviation DN( T) of pseudo- 
random number generator, given by the dynamical system T, depends on statistical 
properties of T and is characterized by the relaxation time t and it is better if 
system T is more unstable. 

4. K-SYSTEM GENERATORS 

If generator (5) is used to fill uniformly a d-dimensional cube, then the 
x”‘, . ..) XCN) . . . sequence is formed, and “words” of d length are composed: 

P, = (A-“‘, . ..) Pd’), 

P, = (F+ I), . ..) X@q, (13) 

. . . 

Here it is clear that instability, in d-dimensional cube, is again characterized by 
one-parameter K. Physically this means that instability of trajectories in 17d in 
different directions has the same scale. 

Is it possible that the instability of trajectories in M = ZZd would be arbitrary in 
different directions? The answer is yes, if multidimensional K-systems are used. In 
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this paper we suggest using the automorphism of Lid produced by the linear 
transformation 

PK=APK-, 

XjK)= i AiiXjK-‘)mod 1, 
j=l 

(14) 

where A = llAiill is an integer matrix with a determinant equal to one.’ The last 
condition provides phase volume conservation. The dynamical system T= 11 AlI ( 14) 
is a K-system if and only if all eigenvalues of the matrix A = IIAJ are in modulus 
different from unity [ 12, 21-241. 

The Sinai-Arov formula [19-241 allows us to calculate entropy of dynamical 
system (14), which is 

h(T)= c ln M, (15) 

as well as the upper estimate for the correlations splitting time, 

z. < l/h(T) = 1 1 In lil,l, (16) 
IAKI > 1 

and relaxation time, 

z < z. ln( l/S V,“). (17) 

The advantage of a pseudorandom number generator, given by a dynamical 
system (14), is that although the relaxation times z (17) and (11) may be made 
equal, the “quality” of mixing in system (14) is higher owing to the fact, that in 
different directions the rate of instability is different and is proportional to the 
eigenvalues of the matrix A, which are quite arbitrary. Such “many-scale” mixing 
of directions ensures a slower growth of the discrepancy D,,,(T). 

There exists one more argument in favor of the above state approach to the 
problem of convergence. When, say, lattice gauge theories are simulated [3] at the 
phase transition point, the gauge systems relax very slowly. Clearly, the role of a 
“thermostat” in this case is played by a dynamical system T, giving the pseudoran- 
dom number generator. Therefore, if the generator relaxation time is !ess compared 
to the characteristics times of the studies system, then it is better: 

Tgener e TCHAR (b); p = 1jKT. (18) 

In conclusion we note that we have failed to obtain an analytical estimate of D, 
for generator (14). It is also unknown for the system (5). However, the viewpoint 
developed in this paper allows more purposeful searching for T systems, which will 

2 The inverse matrix T-’ = A-’ is an integer too. 
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turn out to be more effective in Monte Carlo simulation, of essentially multi- 
dimensional problems. 

As shown by numerical experiments (see next article), the pseudorandom 
sequences obtained with the use of (14) possess much better statistical charac- 
teristics than (5). 
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